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Abstract. The pulsing inertial oscillation (PIO) model is a nonlinear, time-dependent, translating vortex solution
of the inviscid, compressible fluid dynamic equations in the middle troposphere. The translation of this vortex
during a pulse is strikingly similar to that of a supercell storm – a rotating thunderstorm that can generate tornadoes
and hail. Two studies were performed to test the hypothesis that some supercell storms are manifestations of a PIO
pulse. The first study applied the model to an intense interior draft whose buoyancy was bounded by a temperature
excess of±12 K. The peak updraft speed achieved was 41·5 m s−1 and the peak Rossby number was 92·9. The
study also pointed to an advanced concept for attaining higher values. The second study applied the PIO model to
a supercell storm as a whole and succeeded in replicating its bulk properties, such as mesocylonic circulation, net
mass and moisture influxes, and time track. This study also identified a critical feature of the PIO model that could
be tested against storm data: The average vertical draft is downward before the turn in the storm track and upward
afterwards. In the conventional theory, the average vertical draft is upward from storm inception until dissipation.
These differing draft predictions were compared with the best available data, which are surface mesonetwork data.
These data were found to support the PIO model. However, surface data alone are not conclusive, and further
measurements are warranted.
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1. Introduction

A supercell storm is a rotating thunderstorm that can generate tornadoes and hail. A salient
feature of supercell storms is that, upon spin-up, the track of a cyclonic supercell turns to
the right and that of an anticyclonic supercell turns to the left (Fujita and Grandoso [1]). We
present a novel solution for a tropospheric vortex that has the same feature. The model is
nonlinear and is called the pulsing inertial oscillation (PIO). Two studies are made to test the
hypothesis that some supercell storms are manifestations of a PIO pulse.

These studies revive Ferrel’s [2] concept that the rotation of a supercell storm is caused
by the Coriolis force. This concept has remained dormant for many years, partly because of
scaling studies by Wallace and Hobbs [3], Morton [4], Holton [5, pp. 1–19], Davies-Jones [6],
and others that conclude that the Coriolis force is too weak to spin up a supercell storm in the
observed time. The PIO model is a counterexample that negates this conclusion.

The source of rotation in the conventional theory, as reviewed by Bengtsson and Lighthill
[7], Kessler [8], Ray [9], Klemp [10], Churchet al. [11], and others, is horizontal vorticity
associated with vertical wind shear. An initial buoyant updraft tilts and stretches the horizontal
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vortex lines and forms two counter-rotating storms that split apart, as shown numerically by
Schlesinger [12]. Although such storm splitting has been observed on radar by Fujita and
Grandoso [1], Brown [13], and others, it occurs infrequently compared with cyclonic super-
cells, according to Davies-Jones [6]. This apparent difficulty with the conventional model
was resolved as follows: Maddox [14] showed that the vertical windshear vector in the lower
troposphere usually turns clockwise with increasing height in the vicinity of a supercell storm.
Using numerical simulations, Klemp and Wilhelmson [15] then showed that this turning vec-
tor strengthens the cyclonic storm and weakens the anticyclonic storm. If the weakened storm
should produce little precipitation, it would be invisible to radar.

Although the conventional model is highly developed and successful in certain respects,
some fundamental questions remain unanswered. For example, as mentioned by Lilly [16]
and Klemp [10], the model does not explain the rightward translation of a cyclonic supercell.
Also, the conventional model misplaces the initial development of a tornadic vortex – a vortex
of Rossby number about 1000 that precedes a tornado by about 20 min. According to the
conventional model, a tornadic vortex originates at the surface, while Doppler radar indicates
that it originates at midheight in a supercell [6, 11, 17].

The PIO model consists of a partly analytic, partly numerical solution of the inviscid,
compressible fluid dynamic equations for a translating vortex in the middle troposphere.
Compatible solutions are assumed for the boundary and upper layers. The core radius of the
PIO model is arbitrary below about 60 km, so the model can be applied to a supercell storm
as a whole or to an intense internal draft. The latter is the subject of our first study, which is
aimed at determining the upper limits to updraft speed and vorticity relative to the production
of hail and a tornadic vortex.

The second study treats the storm as a whole. In its present rudimentary form, the PIO
model does not resolve coexisting updrafts and downdrafts, but instead treats the time-
dependentspatial averagevertical draft. This average vertical draft is found to benegative
during spin-up – in contrast to the conventional model, where it is positive during spin-up. We
compare these differing predictions of the two models with the best available data, which are
found to be surface mesonetwork data.

Costen and Stock [18] applied the PIO model to a supercell hailstorm that occurred during
the National Hail Research Experiment (NHRE) in northeast Colorado, USA, on 22 July 1972.
(We will refer to this supercell, which is documented by Foote and Fankhauser [19], as the
Colorado hailstorm.) The mesocyclone was already spun up before this storm entered the
NHRE mesonetwork, so no analysis of surface data was done.

In the second study, we apply the PIO model to a supercell hailstorm that originated
inside the mesonetwork of the Cooperative Convective Precipitation Experiment (CCOPE)
in southeast Montana, USA, at 0030 UTC on 12 July 1981. (We will refer to this storm, which
is documented by Fankhauseret al. [20], as theMontanahailstorm.) The CCOPE mesonet-
work is described by Knight [21] and the data quality by Wade [22]. After originating within
the mesonetwork, this storm developed into a cyclonic supercell that produced baseball- to
grapefruit-size hail, and its track turned to the right while still on the mesonetwork. Therefore,
this data set is appropriate for testing the PIO and conventional models.
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Figure 1. Pulsing inertial oscillation (PIO) model for convective core of a supercell storm or an intense internal
draft.

2. PIO model

2.1. TANGENTIAL COORDINATE FRAME

The coordinate frame is a local tangential Cartesian frame where the origin is fixed at mean sea
level (MSL) and thex-, y-, andz-axes point eastward, northward, and upward, respectively.
(Cylindrical coordinatesr, θ , andz are also used, wherex = r cosθ and y = r sin θ .)
Although thex- andy-axes do not curve with the surface, this frame is adequate for describing
tropospheric flows within a horizontal radius of about 60 km [5]. This radius is sufficient to
contain the convective core of a supercell, but not all the outer flow.

In the Cartesian frame, the fluid velocity is denoted byv = (u, v,w) (in m s−1), the
vorticity byω = curlv = (ξ, η, ζ ) (in s−1), the divergence byD = div v = (∂u/∂x+∂v/∂y+
∂w/∂z) (in s−1), and the angular velocity of the Earth by� = (0,�y,�z) (in rad s−1). The
components�y and�z, although slowly varying functions ofy, are treated as constants.

2.2. STORM IDEALIZATIONS AND ZEROTH-ORDER APPROXIMATION

Miller et al.[23] present Doppler radar measurements of a supercell storm that show a bound-
ary layer near the surface, a highly sheared layer near the top, an updraft that has its maximum
at midheight, two downdrafts, and a mesocyclone. As mentioned, the cylinder shown in
Figure 1 is intended to represent, in highly simplified form, either the entire convective core of
a supercell or an intense internal draft. Our analysis is confined to the midtropospheric layer
(b 6 z 6 h), which excludes the boundary and upper layers wherein compatible flows are
assumed. Lateral entrainment, friction, heat conduction, and radiation are neglected.

As shown in Figure 1, the PIO model is a rotating and dilatating vertical draft of radius
a(t). The centerline is located at(xc(t), yc(t)). The mesocyclone is represented by a Rankine
vortex of vorticity ζ(t), which is uniform inside the core(r 6 a(t)) and zero in the outer
region(r > a(t)). To emphasize compressibility, the densityρ (in kg m−3) is taken to decrease
exponentially with heightz, which also implies that the temperature lapse is zero betweenb

andh. For our purposes, this isothermal approximation is preferable to the constant density
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approximation used in the supercell studies by Rotunno and Klemp [24] and Lilly [25]. Rising
parcels of air expand with divergenceD(t), which is also uniform inside the core and zero
in the outer region. The core fluid is uniformly buoyant with a normalized density deficit
B(t), which is called simply the buoyancy. The fieldsω(t),D(t), andB(t) are zeroth-order
approximations to the instantaneousspatial averagevorticity, divergence, and buoyancy in
the core. This property will be used when the model is compared with storm data.

The density of the outer fluid at radiusa is given by

ρ0(a, z) = ρ0
b e−εZ, (1a)

where the fields in the outer region are distinguished by the superscript 0 andZ ≡ z− b. The
coefficientρ0

b and the inverse density scale heightε (in m−1) are constants. Inside the core,
the density is given by

ρ(z, t) = ρ0
b [1− B(t)]e−εZ. (1b)

The buoyancyB(t)� 1, because it corresponds to a temperature excess or deficit of at most
about 12 K [23] and terms ofO(B2) will always be neglected.

The continuity equation is given

∂ρ

∂t
+ v · ∇ρ + ρD = 0. (2)

Substituting the inner density (1b) in (2) and retaining the effects ofB(t) on the buoyant force,
but neglecting its effects onD(t), in accordance with one of the Boussinesq approximations
[26], we have

D(t) = εw(t). (3a)

It follows that the vertical component of velocityw(t) is also spatially uniform inside the core
and thatD(t) is purely horizontal divergence given by

D(t) = ∂u

∂x
+ ∂v
∂y
. (3b)

Equation (3a) is a key approximation of this study andw(t) andD(t)/ε will be used in-
terchangeably. Also included in the core is a horizontal flow with vertical windshear that is
represented by the constantsUb andVb and the horizontal vorticity componentsξ(t) andη(t).

3. Inner reduction

3.1. VELOCITY FIELD

The complete velocity field inside the core is given by

u(x, y, z, t) = Ub + η(t)Z + 1
2[D(t)X(x, t) − ζ(t)Y (y, t)], (4a)

v(x, y, z, t) = Vb − ξ(t)Z + 1
2[D(t)Y (y, t)+ ζ(t)X(x, t)], (4b)
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w(x, y, z, t) = w(t) = D(t)

ε
, (4c)

whereX(x, t) ≡ x − xc(t) andY (y, t) ≡ y − yc(t). The constantsUb andVb represent
the stationary part of the horizontal flowinside the core, andη(t)Z and−ξ(t)Z represent
the inner vertical windshear. The terms−1

2ζ(t)Y and 1
2ζ(t)X represent the inner flow of the

Rankine vortex. The angular velocity of the core fluidθ̇ (in rad s−1) is given by

θ̇ = 1
2ζ, (5)

where an overhead dot denotes an ordinary time derivative. The terms1
2D(t)X and 1

2D(t)Y

represent the inner radial horizontal flow that results from the divergence.

3.2. MOMENTUM EQUATION

The inviscid momentum equation is given by

∂v
∂t
+ ω× v+∇ v

2

2
+ ∇p

ρ
+∇8+ 2�× v = 0, (6)

wherev2 is v·v, p is the pressure (Pa),8 is the geopotential,gz (m2 s−2), g is the gravitational
acceleration(9·81 m s−2).

Solving (9) for∇p and substituting the inner velocity field (4) we find

∂p

∂x
= −1

2ρ(G1−G3v +Du), (7a)

∂p

∂y
= −1

2ρ(G2+G3u+Dv), (7b)

∂p

∂z
= −ρ

(
g + Ḋ

ε
− 2�yu

)
, (7c)

where

G1 ≡ ḊX − ζ̇ Y −Dẋc + ζ ẏc + 2η̇Z + 2
D

ε
(η + 2�y), (7d)

G2 ≡ ḊY + ζ̇X − ζ ẋc −Dẏc − 2ξ̇Z − 2
D

ε
ξ, (7e)

G3 = ζ + 4�z. (7f)

3.3. SECOND-ORDER PARTIAL DERIVATIVES AND NONLINEAR HARMONIC EQUATIONS

Pressure jumps are known to occur at gust fronts in the surface layer(z < b), as described
by Haltiner and Martin [27, pp. 305–307]. However, in the midtropospheric layer, we assume
thatp and its first- and second-order partial derivatives are continuous functions ofx, y, and

168556.tex; 5/09/1996; 12:57; p.5



282 R. C. Costen and L. J. Miller

z (except at radiusa, wherep must be continuous but its derivatives can be discontinuous). It
follows that for(r < a, b 6 z 6 h)

∂2p

∂x∂y
= ∂2p

∂y∂x
,

∂2p

∂x∂z
= ∂2p

∂z∂x
,

∂2p

∂y∂z
= ∂2p

∂z∂y
. (8)

Substituting the cross derivatives of (7a), (7b), and (7c) in (8), dividing byρ, and setting the
coefficients ofX,Y , andZ individually to zero in each equation we obtain the following set
of coupled ODE’s

ξ̇ = 1
2[η(ζ + 4�z)−Dξ ], η̇ = −1

2[ξ(ζ + 4�z)+Dη], (9a,b)

ζ̇ = −D(ζ + 2�z), Ḋ = 1
2[ζ(ζ + 4�z)−D2], (9c,d)

−ζ
2
(ẏc − Vb)+ D2 (ẋc − Ub)− η

D

ε
−�yD

ε
+ 2�zVb = 0, (9e)

ζ

2
(ẋc − Ub)+ D

2
(ẏc − Vb)+ ξ D

ε
−�y ζ

ε
− 2�zUb = 0. (9f)

Equations (9e) and (9f) can be solved for the translational velocity of the centerline (in m s−1)

ẋc = Ub + 2

ε
�y + 2

ζ 2+D2
[ζ(−ξw + 2�zUb)+D(ηw − 2�zVb)], (10a)

ẏc = Vb + 2

ζ 2+D2
[ζ(−ηw + 2�zVb)+D(−ξw + 2�zUb)]. (10b)

At the equator where�y is maximal, the term 2�y/ε in (10a) contributes about 1 m s−1 to the
translation.

3.4. PRESSURE FIELD

To obtain the inner pressure fieldp, we first substitute (9) and (1b) in the pressure gradient
(7), which gives

∂p

∂x
= −ρ0

b e−εZ(1− B)�yD
ε
,

∂p

∂y
= ρ0

b e−εZ(1− B)�y ζ
ε
, (11a,b)

∂p

∂z
= −ρ0

b e−εZ(1− B) {g + ẇ − 2�y
[
Ub + ηZ + 1

2(DX − ζY )
]}
. (11c)

These partial derivatives can now be integrated to obtainp as

p(x, y, z, t)

= ρ0
b e−εZ(1− B)g

ε

{
1+ ẇ

g
− 2�y

g

[η
ε
+ Ub + ηZ + 1

2(DX − ζY )
]}
. (12)

This result shows that the PIO model has no pressure drop at its center, whereX = Y = 0. A
2-mb pressure drop was measured in the Montana hailstorm. According to Davies-Jones [6],

168556.tex; 5/09/1996; 12:57; p.6



Pulsing inertial oscillation, supercell storms, and surface mesonetwork data283

the pressure deficit in mesocyclones is typically about 5 mb. Such a pressure deficit indicates
a deviation from the PIO model. Reasons for such deviations are discussed in Section 5.4.

3.5. BALANCE OF FORCES

Equations (9e) and (9f) can be multiplied byρA, whereA = πa2, and written in vector form
to give a balance of forces per unit length (in N m−1)

1
2ρAζ ẑ× (ṙ c − Vb)+ 1

2ρAD(ṙ c − Vb)

−ρAω × ẑw −A∇Hp − 2ρA�× ẑw − 2ρA�zẑ× Vb = 0, (13a)

where carats denote unit vectorsṙ c ≡ x̂ẋc + ŷẏc, Vb ≡ x̂Ub + ŷVb, and by (11a), (11b) and
(1b)

∇Hp = −x̂�yρD
ε
+ ŷ�yρ ζ

ε
= ẑ×�ρD

ε
− ẑ× (ẑ×�)ρ ζ

ε
. (13b)

The first term is analogous to the Magnus force or Kutta-Joukowski force on a cylinder
with a bound vortex of circulationAζ ; differences are a factor of12 and the definition ofVb

as the stationary part of the fluid velocityinside the core. The second term is analogous to
the force on a source tube of strengthAD. The third term is the force exerted by the inner
horizontal vorticity on the vertical draft. The fourth term is the force exerted on the core by
the horizontal pressure gradient. The fifth term is the Coriolis force on the vertical draft. The
last term is the Coriolis force on the stationary part of the flow inside the core.

Thus far, we have reduced the inner solution to a time-dependent set of ODE’s, except that
we have no equation forB(t) or a(t). These quantities are determined by the jump conditions
at the cylindrical interface between the inner and outer solutions, as shown in Figure 1. The
cross section is circular only if the model does not translate. For simplicity, we will determine
B(t) anda(t) for a nontranslating model and assume that these results apply approximately
to the translating model. This assumption will fail if the inner flow does not block the relative
environmental wind (Brandes [28]), which will then erode the core.

4. Nontranslating PIO model

4.1. INNER SOLUTION

For the PIO model to remain centered on the origin (i.e., forẋc = ẏc = 0), we must take
Ub = Vb = ξ = η = �y = 0. The velocity (4) and pressure (12) then become in cylindrical
coordinates

vr(r, t) = D(t)

2
r, vθ (r, t) = ζ(t)

2
r, vz(t) = w(t) = D(t)

ε
, (14a,b,c)

p(z, t) = ρ0
b e−εZ

g

ε
[1− B(t)]

[
1+ ẇ(t)

g

]
. (14d)
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4.2. OUTER SOLUTION

With the Rankine vortex as a model, we take the external vorticityω0 and divergenceD0 to
be zero. Hence, the outer velocity field is given by (forr > a)

v0
r (r, t) =

D(t)a2(t)

2r
, v0

θ (r, t) =
ζ(t)a2(t)

2r
, v0

z = w0 = 0. (15a,b,c)

The fieldvr is continuous at the interfacer = a(t), as required by the jump conditions for the
continuity and momentum equations. The fieldvθ is also continuous, butw, ρ,D, andζ all
have finite discontinuities. The requirement that the interface move with the fluid gives

ȧ = 1
2Da. (16)

The core buoyancyB(t) can be determined from the jump condition that the pressure be
continuous atr = a. To determine the outer pressure field, we first solve the momentum
equation (6) for the gradient in cylindrical coordinates and then substitute the outer velocity
field from (15) and the tendencies from (9c), (9d), and (16) to obtain

∂p0

∂r
= −gFρ

0

εr

(
1− a

2

r2

)
,

∂p0

∂θ
= 0,

∂p0

∂z
= −gρ0, (17a,b,c)

whereF , the Froude number, is given by

F = εa2

4g
(ζ 2+D2). (17d)

As with the inner solution, we require

∂2p0

∂r∂z
= ∂2p0

∂z∂r
, (r > a, b 6 z 6 h). (18)

Consequently, the outer densityρ0 must satisfy

∂ρ0

∂r
= F

εr

(
1− a

2

r2

)
∂ρ0

∂z
. (19)

The solution of this equation that remains bounded at infinity and satisfies the boundary
condition (1a) atr = a is given by

ρ0(r, z, t) = ρ0
b

(a
r

)F
exp

[
−εZ + 1

2F

(
1− a

2

r2

)]
. (20)

Substituting this result in (17) and integrating for the outer pressure, we have the hydrostatic
result

p0(r, z, t) = g

ε
ρ0(r, z, t) = ρ0

b

g

ε

(a
r

)F
exp

[
−εZ + 1

2F

(
1− a

2

r2

)]
. (21)
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Table 1. Initial values and parameters used in PIO
model for Montana hailstorm.

ξ(0), s−1.................................................1·05×10−4

η(0), s−1.................................................9·95×10−4

ζ(0), s−1.................................................4·62×10−4

D(0), s−1.................................................................0

w(0), m s−1..............................................................0

a(0), km..............................................................13·9
θ(0), rad...................................................................0

xc(0), m....................................................................0

yc(0), m....................................................................0

Ub, m s−1..........................................................10·85

Vb, m s−1.........................................................−2·27
a�y , rad s−1........................................5·0479×10−5

a�z, rad s−1........................................5·2623×10−5

ab, km MSLb........................................................2·5
ah, km MSLb........................................................6·3
aρ0
b , kg m−3........................................................0·92

a,cp(b), kPa.........................................................75·5
g, m s−2...............................................................9·81
dε, m−1...................................................1·19×10−4

F .............................................................2·03×10−4

T 0, K....................................................................287
cT (b), K...............................................................287
cT (h), K...............................................................260

∂T/∂z, K m−1........................................−7·2×10−3

R, J kg−1 K−1......................................................287

cp, J kg−1 K−1..................................................1004

Lc, J g−1......................................................2·5×103

aFankhauseret al. [20]. bAbove mean sea level (MSL).
cSounding from Baker, Montana, at 0110 UTC 12 July
1981 (see also Figure 5).dFrom (23) at heightz = b.

Because of the smallness ofF (Table 1),p0 andρ0 are essentially independent ofr within the
60 km radius of validity. Asr →∞, p0 andρ0 slowly approach zero.

4.3. BOUYANCY AND INNER PRESSURE

Equating the outer pressure (21) and the inner pressure (14d) atr = a, we obtain

B(t) = ẇ(t)

g
. (22)

This expression is similar to that given by Darkow [29] for the vertical acceleration of a
nonentraining bouyant parcel. The inner pressure is now independent oft and given by

p(z) = ρ0
b

g

ε
e−εZ. (23)
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By (9d), the buoyancy (22) can also be written

B = 1

2εg
[ζ(ζ + 4�z)−D2]. (24)

4.4. SUPPLEMENTARY FORMULAS

Although the model is now complete, formulas for certain additional quantities will be useful
for comparison with meteorological data. The mesocyclonic circulation0 is given by (in
m2 s−1)

0 = πa2ζ. (25)

The net mass influxM at cloud baseb is given by (in kg s−1)

M = πa2wρ0
b(1− B). (26)

As mentioned earlier, the outer temperatureT 0 in the model is a constant; its value is given
by

T 0 = g

εR
, (27)

whereR, the gas constant, equals 287 J kg−1 K−1. The inner temperatureT is given by

T (t) = T 0[1+ B(t)]. (28)

Thus, the model core is also isothermal, but its temperature varies with the buoyancy.
The energy equation, as given by Holton [5, p. 51], can be written

q = ρcp
(
∂

∂t
+ v · ∇

)
T −

(
∂

∂t
+ v · ∇

)
p, (29)

whereq (in W m−3) is the diabatic heating rate, which in the PIO model is due only to latent
energy release, andcp equals 1004 J kg−1 K−1. Substituting the inner pressure (23) and tem-
perature (28) and integrating over the core, we obtain the total heating rateQ (in W) required
to support the PIO

Q = ρ0
b

πa2

ε

[
cpT

0Ḃ +w
(
cp
∂T

∂z
+ g

)]
[1− e−ε(h−b)]. (30a)

Although the model troposphere is isothermal betweenb andh, we have retained∂T /∂z to be
more accurate when applying this formula to an actual supercell. The corresponding net water
vapor influxMv (in g s−1) is given by

Mv = Q

Lc
, (30b)

whereLc, the latent heat of condensation, equals 2·5×103 J g−1.
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5. Nondimensionalization and analytic solution

5.1. NONDIMENSIONALIZATION

We define dimensionless (primed) variables by

t ′ = 2�zt, (31a)

(ξ ′, η′, ζ ′,D′) = 1

2�z
(ξ, η, ζ,D), (31b)

(where we will useζ ′ interchangeably with the Rossby number Ro)

B ′ = εgB

2�2
z

= εg(T − T 0)

2�2
zT

0
, (31c)

a′ = a

a0
, (31d)

where subscript 0 denotes an initial value att ′ = 0.
The model Equations (9a)–(9d), (24), (16), and (5) can then be written in dimensionless

form, as follows

2
dξ ′

dt ′
= η′(ζ ′ + 2)−D′ξ ′, 2

dη′

dt ′
= −ξ ′(ζ ′ + 2)−D′η′, (32a,b)

dζ ′

dt ′
= −D′(ζ ′ + 1), 2

dD′

dt ′
= ζ ′(ζ ′ + 2)−D′2, (32c,d)

B ′ = ζ ′(ζ ′ + 2)−D′2, da′

dt ′
= D′a′

2
,

dθ

dt ′
= ζ ′

2
. (32e,f,g)

5.2. ANALYTIC SOLUTION

Equations (32c) and (32d) uncouple from the other equations. Although this pair is nonlinear,
the equation for dD′/dζ ′ is linear inD′2 and leads to an analytic solution. Subject to the initial
conditionsD′(0) = 0 andζ ′(0) = ζ ′0, the analytic solution is given by

ζ ′(t ′) =
cos t ′ − ζ ′0

ζ ′0+2

1+ 2
ζ ′0(ζ ′0+2) − cos t ′

, (33a)

D′(t ′) = ζ ′0(ζ
′
0+ 2) sin t ′

|ζ ′0(ζ ′0+ 2) sin t ′|

√
(ζ ′0− ζ ′)

(
ζ ′ + ζ ′0

ζ ′0+ 1

)
. (33b)

Equations (32c), (32d), and (32f) yield, witha′(0) = 1

a′(t ′) = |ζ ′0|√
ζ ′2+D′2 , (33c)
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from which it follows that the Froude NumberF , as given by (17d), is a constant of the

motion. By (32a), (32b), and (32f), we have
√
ξ ′2+ η′2 = (1/a′)

√
ξ ′20 + η′20 , which shows

that the magnitude of the inner horizontal vorticity vector is inversely proportional to the core
radius. Integration of (32g) gives, withθ(0) = 0

θ(t ′) = ζ ′0+ 1

|ζ ′0+ 1| arctan

[
|ζ ′0+ 1| tan

(
t ′

2

)]
− t
′

2
. (33d)

Plots ofD′ versusζ ′ andζ ′,D′, B ′, a′, andθ versust ′ are shown in Figure 2 forζ ′10 = −0·814
(Montana hailstorm simulation) andζ ′20 = −1·186. In the(ζ ′,D′) phase plane, there are
equilibrium points at (0,0) and (−2,0). The point (0,0) is the center for an oscillation that gives
cyclonic pulses and (−2,0) is the center for anticyclonic pulses. The lineζ ′ = −1 separates
these two oscillations and represents infinite contraction and spin-up for both. Since initial
valuesζ ′0 are chosen along the lineD′ = 0, two values ofζ ′0 give the same solution, except
that the pulses are displaced byπ . (Had we chosenζ ′10 = 4·39 andζ ′20 = −6·39, the same
pulses in Figure 2 would have occurred att ′ = 0,±2π, . . .). Cyclonic and anticyclonic spin-
up both occur in a contracting downdraft. The downdraft reverses in the middle of a pulse and
spin-down occurs in an expanding updraft. This draft reversal results from a pulse of positive
buoyancy.

5.3. EXTREMA FORMULAS, ETC.

Values of the fields att ′ = 0 andt ′ = π are related as follows

ζ ′(π) = −ζ
′
0

ζ ′0+ 1
, ζ ′0 =

−ζ ′(π)
ζ ′(π)+ 1

, (34a,b)

D′0 = D′(π) = 0, B ′0 = ζ ′0(ζ ′0+ 2), (34c,d)

B ′(π) = −ζ
′
0(ζ
′
0+ 2)

(ζ ′0+ 1)2
, a′(π) = |ζ ′0+ 1|. (34e,f)

The fieldsD′, B ′, andθcyclonic have extrema that occur at intermediate times

D′max=
∣∣∣∣ζ ′0(ζ ′0+ 2)

2(ζ ′0+ 1)

]
, D′min = −D′max, B ′min

−(ζ ′20 + 2ζ ′0 + 2)2

8(ζ ′0 + 1)2
, (34g,h,i)

θmax=
∣∣∣∣∣arctan

√
ζ ′0+ 1− arctan

1√
ζ ′0+ 1

∣∣∣∣∣ (ζ ′0 > −1) cyclonic pulse, (34j)

θmin = −θmax (ζ ′0 > −1) cyclonic pulse. (34k)

As the intensity of a cyclonic pulse increases,θmax→ 1
2π ; hence the total angular excursion

of the core fluid(θmax− θmin)→ π .
The dimensionless time interval to spin up a cyclonic peak fromζ ′ = 0 is given by

1t ′spin-up= arccos

(
ζ ′0

ζ ′0+ 2

)
, (06 ζ ′0). (34l)
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As the pulse amplitude increases, the spin-up timedecreases. This features is typical of
nonlinear oscillations [30].

Since the limiting factor on the amplitude of a pulse is the core buoyancy, it is useful to
rewrite some of the preceding relations in terms of the initial buoyancyB ′0, whereB ′0 > −1,
as follows

ζ ′0 = −1+
√

1+ B ′0 (cyclonic pulse), (35a)

ζ ′0 = −1−
√

1+ B ′0 (anticyclonic pulse), (35b)

B ′(π) = −B
′
0

1+ B ′0
, D′max=

|B ′0|
2
√

1+ B ′0
, B ′min =

−(2+ B ′0)2
8(1+ B ′0)

. (35c,d,e)

Equation (35e) shows that as the pulse amplitude gets large, the positive peaks ofB ′(t)
becomes 8-times greater than its negative peaks.

5.4. MAXIMUM VORTICITY AND UPDRAFT SPEED

In this section, we apply the PIO model to an intense vertical draft in the interior of a supercell
storm. The objective is to see if the PIO can reproduce a hail-producing updraft ofw ≈
50 m s−1 or a tornadic vortex of Rossby number Ro≈ 1000. As mentioned, we limit the
temperature excess in the core(T − T 0) to the range (−12 K 6 T − T 0 6 12 K). The
parameters for the Montana hailstorm are listed in Table 1:�z = 5·2623× 10−5 s−1, ε =
1·19× 10−4 m−1, andT 0 = 287 K. TakingT − T 0 = 12 K in (31c), we obtainB ′max= B ′0 =
8·81×103. Equations (35a) and (35d) then giveζ ′0 = ζ ′max= Romax= 92·9 andD′max= 46·9,
from which we obtainζmax= 9·78× 10−3 s−1 andwmax= 41·5 m s−1.

This value forwmax is 17 percent short of the goal. The value forζmax, although triple
the maximum vorticity of 3× 10−3 s−1 measured in the interior of the Montana hailstorm
(Section 7.1), is an order of magnitude less than the goal of a tornadic vortex. However, the 8
to 1 asymmetry between positive and negative peaks of buoyancy in result (35e) has indicated
something new to try: In the preceding calculation, the minimum dimensionless buoyancy
B ′min = −1·1× 103, for whichT − T 0 = −1·5 K. If, instead, we takeB ′min = −8·81× 103,
which corresponds to the negative limitT − T 0 = −12 K, then the positive extremumB ′max
will be far off the allowable scale. Since the PIO goes through negative values of buoyancy
first, it could proceed until it encounters the positive limit (T − T 0 = 12 K). Then the PIO
would stall, leaving the internal draft in a state of prolonged downflow, contraction and spin-
up – a scenario that should produce a higher Rossby number. A different stall scenario could
increase the updraft speed and also explain the 5 mb central pressure deficit typically observed
for mesocyclones. After any stall, however, the problem requires a different formulation that
is beyond the present scope.

6. Physical nature of PIO

6.1. INERTIAL FLOW

We present a simple physical picture for the two oscillations shown in Figure 2. The model
is nontranslating. The periodπ/�z (in s), which is half the period of a Foucault pendulum,
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suggests that the oscillations are inertial. As described by Holton [5, pp. 64–65] and Haltiner
and Martin [27, pp. 178–181], inertial flow is frictionless horizontal flow in which a fluid
parcel moves with constant speedvi along an arc such that the centrifugal force balances the
Coriolis force. The horizontal pressure gradient∇Hp is zero – which agrees with the absence
of a central pressure deficit in the PIO model. The radiusri of the arc is given by (in m)
ri = vi/2�z and the motion is anticyclonic. Since we take�z constant, the parcel traverses
a circle, as shown in Figure 3(a). Introducing the dimensionless coordinatesr ′i = ri/a0 and
v′i = vi/2�za0 we haver ′i = v′i .
6.2. CORE CONTRACTION AND SPIN-UP

We now consider the fields in Figure 2 att ′ = 0. Figure (3b) is an aerial view of the dimen-
sionless core at this time. The velocity of parcels on the periphery is given byv′i = −1

2ζ
′
0. The

inertial radius of these parcels,r ′i = −1
2ζ
′
0, is also shown. The physical explanation for the

cyclonic pulses in Figure 2 is as follows: Figure 3(c) shows the inertial arcs forζ ′0 = −0·814
during the first half period(0 6 t ′ 6 π) when the core contracts and spins up cyclonically.
As the core contracts, the parcels are compressed by descending in a negatively buoyant
downdraft. The negative buoyancy results from evaporative cooling of moisture deposited in
the middle troposphere by a previous updraft. This downdraft reverses att ′ = π because of a
pulse of positive buoyancy from condensational heating of moist low level air that is lifted by
the gust front of the downdraft. Figure 3(d) shows the complete cycle including spin-down in
an expanding updraft. Although we have only followed parcels on the periphery, every parcel
in the core simultaneously traverses a similar inertial circle.

The anticyclonic pulses in Figure 2 have a similar explanation. Figure 3(e) shows the iner-
tial arcs forζ ′0 = −1·186, where the core contracts and spins up anticyclonically. The vertical
speed and buoyancy are the same as for cyclonic spin-up. A singularity occurs asr ′i → 0·5
(or ζ ′0 → −1) that corresponds to infinite contraction and spin-up. In the troposphere, this
mathematical singularity is avoided because of physical limitations on the buoyancy.

6.3. BLOCKING MESO-ANTICYCLONE

Finally, if r ′i = 1 (or ζ ′0 = −2), we obtain a steady meso-anticyclone. (The full set of model
equations shows thaṫxc = 2�y/ε, ẏc = D = w = B = Q = 0, and thata, ξ, η,Ub,
andVb are arbitrary constants, subject to the constraint that the core not be eroded. The meso-
anticyclone translates eastward at about one tenth the speed of weather patterns and, therefore,
would have a blocking effect.)

7. Application to Montana hailstorm

7.1. STORM DESCRIPTION

Our second study compares the PIO model with data from the Montana hailstorm. This storm
initially appeared on radar inside the CCOPE mesonetwork at about 0030 UTC on 12 July
1981. The midpoint of the right turn in its track occurred at 0200 UTC. Between 0206 and
0209 UTC, three Doppler radars measured an interior vorticity maximum of 3× 10−3 s−1.
At 0211 UTC, the supercell was producing baseball- to grapefruit-size hail. At about 0250
UTC, it moved off the mesonetwork and evolved into a mesoscale convective complex. We
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(a) (b)

(c) (d)

(e) (f)

Figure 2. PIO plots of solutions (33) and (32e) forζ ′10 = −0·814 (Montana hailstorm simulation) and
ζ ′20 = −1·186 withD′0 = 0. Primed quantities represent dimensionless core averages. Solid triangles relate
the simulation to universal time during the Montana hailstorm of 12 July 1981. (a) Oscillations on theζ ′ − D′
phase plane, (b) Vertical vorticityζ ′ versust ′, (c) Horizontal divergenceD′ versust ′, (d) BuoyancyB′ versust ′,
(e) Core radiusa′ versust ′, (f) Angular displacement of core fluidθ versust ′.
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Figure 3. Aerial views showing physical nature of PIO oscillations in Figure 2. (a) Inertial oscillation of individual
air parcel, (b) Dimensionless model core att ′ = 0 and inertial velocityv′i and inertial radiusr ′i of parcels on the
periphery, (c) Contraction and cyclonic spin-up forζ ′0 = −0·814, (d) Complete cycle forζ ′0 = −0·814. Solid
triangles are the same as in Figure 2, (e) Contraction and anticyclonic spin-up forζ ′0 = −1·186.
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(a) (b)

Figure 4. Numerical solutions of (9a), (9b), and (10) for the Montana hailstorm simulation. Initial values and
parameters are listed in Table 1. Solid triangles are the same as in Figure 2. (a) Phase diagram of inner horizontal
vorticity componentsξ andη, (b) Time track of model centerline on horizontal plane.

hypothesize that the PIO started sometime between 0030 and 0100 UTC, proceeded through
one pulse, and stopped shortly after 0250 UTC.

7.2. INITIAL VALUES AND PARAM ETERS

The initial values and other parameters used in the PIO model to simulate this hailstorm
are listed in Table 1, wheret = 0 coincides with the midpoint of a pulse. Dimension-
less plots forζ ′,D′, B ′, a′, andθ are already given by the cyclonic pulses in Figure 2 with
a trivial shift of the t ′-origin. Besides these plots from the analytic solution, we numeri-
cally integrate (9a), (9b), and (10) to obtainξ(t), η(t) andxc(t), yc(t), which are plotted in
Figure 4. (The numerical procedure is a fourth order Runge-Kutta-Fehlberg code. The time
step is automatically adjusted within the range 10−11 to 1, subject to an error tolerance of 10−6

per step.) The five solid triangles in Figures 2, 3(d) and 4, relate the simulation to universal
time during the hailstorm. The average vertical draft in the model is also tested qualitatively
against surface mesonetwork data at these five times.

The initial values in Table 1 were chosen as follows: As shown in Figures 2(b) and 4(b),
the midpulse is coincident with the center of the turn and, therefore, occurs at 0200 UTC. The
minimum core radiusa0 was chosen to include the 40 dBZ low level radar echo at 0200 UTC
so that the core would capture the major convection as well as the mesocyclonic vorticity. The
initial valueζ0, which determines the degree of nonlinearity, was chosen so thata(t) replicates
the growth rate of the radar echoes after 0200 UTC, as given by [20]. The initial valuesζ0, η0

and the constantsUb, Vb were chosen to simulate the time track of the mesocyclone. The PIO
time track from Figure 4(b) is shown superimposed on the observed time track in Figure 5,
where fairly good agreement is evident.

With these initial values, the model computes the peak mesocyclonic circulation0 as 2·8×
105 m2 s−1 at 0200 UTC. Although0 was not reported for the Montana storm, the computed
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Figure 5. Theoretical and observed time tracks for Montana hailstorm on CCOPE mesonetwork. Data are from
Fankhauseret al. [20]. Theoretical time track is from Figure 4(b), and theoretical core size is from Figure 2(e) and
Table 1.

value compares with a typical value of 5× 105 m2 s−1, as given by Davies-Jones [6]. The net
mass influxM at cloud base is computed as 1·32× 109 kg s−1 at 0230. This quantity was
not reported either; however, the computed value compares well with a measured value of
1·3× 109 kg s−1 for M during a similar time in the Colorado hailstorm. The model computes
the net water vapor influxMv at 0230 as 4·2×109 g s−1. This value compares with a measured
value of 8·5× 109 g s−1 – again from the Colorado hailstorm. According to our simulation,
Mv continues to rise after 0230. We speculate that the PIO stops shortly after 0250 UTC partly
because the net water vapor influx required to maintain it becomes too large.

7.3. COMMENTS ON TIME TRACK, ETC.

The eastward drift of the kidney-shaped track shown in Figure 4(b) results from the term
2�y/ε in (10a). The upper (westward) track segments that occur between the pulses are
not observed for supercells and are included only to show the complete oscillation. These
upper segments suggest a second reason for the PIO to stop after a pulse. As the track turns
toward the north and eventually toward the west, the relative environmental wind increases.
The inner flow can no longer block the relative environmental wind, which then erodes the
core. Incidentally, we takeh = 6·3 km in Table 1 because a vertical radar section appears to
show substantial core erosion above this height [20].

We seek an explanation for the right turn in the track at 0200 UTC. Figure 4(a) shows that
the average horizontal vorticity vector rotates clockwise about1

4 turn from 0130 to 0230 UTC
with ξ changing from negative to positive at about 0200 UTC. The average vertical draftw

also changes from negative to positive at 0200, as shown in Figure 2(c). Equation (10b) forẏc
confirms that these sign reversals inw andξ cause the right turn in the track. (If the model is
run with ξ0 = η0 = 0, no turn at all occurs at 0200 UTC.) Newton and Newton [31], Rotunno
and Klemp [24], and others have also linked the right turn in the track to horizontal vorticity
but not to a reversal of the average vertical draft.

Besides the time track, Figure 5 shows the model core at the five times. Figure 6 shows
the corresponding low level radar echoes. The core approximately matches the 40 dBZ radar
echo at 0200 UTC. However, at earlier times, 0130, 0100, and 0030 UTC, the model core is
substantially larger than the corresponding radar echo. We conclude that much of the average
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(a) (b)

(c) (d)

(e)

Figure 6. Low-level radar echoes from Montana hailstorm (12 July 1981) and corresponding surface analy-
sis polygons superimposed on CCOPE mesonetwork. The reflectivity grayscale goes from 10 to 60 dBZ.
(a) 0030 UTC, (b) 0100 UTC, (c) 0130 UTC, (d) 0200 UTC, (e) 0230 UTC.

downdraft predicted by the PIO model during this earlier period would have been invisible to
radar.

8. Comparison of the PIO and conventional models with surface mesonetwork data

8.1. CRITICAL DATA

The salient feature of the PIO model is the contracting average downdraft that spins up the
mesocyclone with help from the Coriolis force. This downdraft occurs before the track turns to
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the right – before 0200 UTC for the Montana hailstorm. After 0200, the average draft becomes
upward. In the conventional model, the average vertical draft is upward from storm inception
until dissipation.

Relevant data before the right turn are not easy to find. If the downdraft should contain
little condensed water, it would be invisible to the eye and camera as well as to radar. This
downdraft could be detected by aircraft wind measurements; but, as shown by Foote and
Fankhauser [19], it takes aircraft about 45 min to circumnavigate a storm. Once a probable
supercell is identified, little time is left for aircraft to reach it and make measurements before
the right turn. At present, the only way of detecting this downdraft appears to be with a surface
mesonetwork. The average downdraft would cause an average divergent flow near the surface
that could be detected by the wind sensors. Conversely, an average updraft would cause an
average convergent flow.

Surface data alone are not conclusive. Multilevel wind data between the surface and cloud
base (1·5 km above the surface for the Montana storm) are needed to measure the net mass
influx at cloudbase. Such multilevel wind data could be obtained by a mesonetwork composed
of wind profilers operating in conjunction with Doppler radars. The wind profilers would
function in the clear air and the Doppler radars in the precipitation regions. Until such data
become available, however, surface data appear to be the only means for testing the average
vertical draft sequences in the PIO and conventional models.

8.2. UNIQUE DATA SET

After forming inside the CCOPE mesonetwork, the Montana hailstorm traversed the south-
ern part of the network where the mesh size was about 20 km and the wind sensors were
mounted 6 m above ground level (AGL). Hence, the term ‘surface’ as we will use it actually
denotes 6 m AGL. Surface winds were recorded every 5 min at each operating station. The
recorded values were time averages of data taken during the previous 5 min. Sample vector
plots of these recorded surface winds were made every half hour. These plots were obtained on
35-mm microfilm, entitled ‘CCOPE PROBE Data – A First Look’, from the National Center
for Atmospheric Research in Boulder, Colorado, USA.

8.3. SURFACE DATA ANALYSIS METHOD

We analyzed these plotted surface wind data at 0030, 0100, 0130, 0200, and 0230 UTC on 12
July 1981. The analysis was done graphically on 25 by 25-cm prints. A polygon was drawn
on network points that surround the center of the mesocyclone at each of these five times, as
shown in Figure 6. The vertices were taken 20 to 40 km from the mesocyclone center. This
size was needed to accommodate the 20-km mesh size and to capture the model core shown in
Figure 5. Some network stations were inoperative or only partially operative when this storm
passed through; the resulting absence of data caused irregularities in some of the polygons.

8.4. AVERAGE HORIZONTAL DIVERGENCE VERSUSt

The average horizontal divergence〈D〉sfc on the surface polygons is plotted versust in
Figure 7. Positive〈D〉sfc indicates an average downdraft just above the surface. Similarly,
negative〈D〉sfc indicates an average updraft just above the surface. According to Wade [22],
the error in the surface wind measurements was 0·5 m s−1. The error bars in Figure 7 were
determined by using this value in an error formula given by Davies-Jones [32].
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Figure 7 supports the PIO hypothesis. The transition from average updraft at 0030 UTC
to average downdraft at 0100 UTC suggests that PIO started during this interval. The aver-
age downdraft continued until about 0200 UTC, when it changed to an average updraft, in
qualitative agreement with the PIO model.

Figure 7. Average horizontal divergence〈D〉sfc
of winds measured near surface beneath Montana
hailstorm versust .

Figure 8. Updraft, downdraft, and net draft com-
ponents of horizontal effluxEsfc computed from
winds measured near surface beneath Montana hail-
storm versust .

8.5. DRAFT STRUCTURE AND TIME DEPENDENCE

Further details of the measured vertical draft were obtained by using interior grid points to
divide each polygon into triangles. When the horizontal divergence was computed on each tri-
angle, coexistent updrafts and downdrafts were resolved. In particular, at 0200 UTC, we found
a forward- and a rear-flank downdraft. These dual downdrafts are typical of well-developed
supercell storms, as shown by Milleret al. [23] and Davies-Jones [6].

If the measured horizontal divergence on each triangle is multiplied by its area, we obtain
the horizontal effluxEsfc (in m2 s−1). These effluxes are additive and can be plotted sepa-
rately for the downdraft, updraft, and net draft as done in Figure 8. This figure highlights
the coexistence of updrafts and downdrafts. The updrafts, subjected to vertical windshear,
could continuously supply moisture to the middle troposphere for evaporatively cooling the
downdrafts. Figure 8 shows that the reversal in net draft at about 0200 UTC was caused by a
rapid growth of the updraft.

9. Conclusions

The pulsing inertial oscillation (PIO) model is a nonlinear, time-dependent, translating vortex
solution of the inviscid, compressible fluid dynamic equations in the middle troposphere. A
property of this model is that vertical windshear causes the track of a cyclonic vortex to turn
to the right during a pulse and that of an anticyclonic vortex to turn to the left. Such translation
is typical of supercell storms – rotating thunderstorms that can generate tornadoes and hail.

Two studies were made to test the hypothesis that some supercell storms are manifestations
of a PIO pulse. The first study applied the PIO model to an intense internal draft. The objective
was to simulate a hail producing updraft≈ 50 m s−1 and a tornadic vortex – a vortex aloft
of Rossby number≈1000 the precedes development of a tornado at the surface. The draft
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buoyancy was limited by practical considerations to a temperature excess of±12 K. Subject
to this limitation, the PIO produced a maximum updraft speed of 41·5 m s−1 and a Rossby
number of 92·9. However, the high degree of asymmetry between the positive and negative
values of buoyancy required to support the PIO suggest that the PIO could easily get stalled
in a state of prolonged downdraft, contraction, and spin-up. Such a stall could increase the
Rossby number. A different stall scenario could increase the updraft speed and also explain the
5 mb central pressure deficit typically observed for mesocyclones. To explore these promising
options, however, requires an advanced model that would apply after a stall has occured.

The second study applied the PIO model to a supercell storm as a whole. The model
successfully simulated bulk properties such as the mesocyclonic circulation, the net mass and
moisture influxes, and the time track. Moreover, we found a critical feature of the PIO model
to test against storm data. The average vertical draft is downward before the turn in the track
and upward afterwards. This feature of the PIO model contrasts with the conventional model,
in which the average vertical draft is upward from storm inception until dissipation.

Surface mesonetwork data were found to be the best data available for testing the vertical
draft sequences in the PIO and conventional models. Data from a hailstorm that occurred
during the 1981 Cooperative Convective Precipitation Experiment (CCOPE) in southeastern
Montana, USA, support the PIO model. However, surface data alone are not conclusive, and
further measurements are needed. A mesonetwork consisting of wind profilers operating in
conjunction with Doppler radars would yield multilevel data that are conclusive.
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